Advisory Committee Fall 2025 Minutes Welding

November 06, 2025 - Noon

-Skills Training Center, Multipurpose Room 400

Members Present
Jeremy Palacios
Joey Davis
Mark Patterson

Members Not Present

Tom Ostovich Blair Shipp Jim Harris

Brian Aldrich

Vernon College Faculty/Staff

Bettye Hutchins

Zachary Nguyen-Moore

Chaz Tepfer Mark Holcomb Madison Kretzmer

Melissa Moore-Rodriguez

Amy Ray

Joseph Velasquez

Welcome and Introductions	David (Chaz) Tepfer
Chaz Tepfer welcomed committee members and invite	ed all to introduce themselves.
Purpose of Advisory Committee	· · · · · · · · · · · · · · · · · · ·
Election of Vice Chair, and Recorder	recorder and invited the committee to by Bettye Hutchins for this meeting) Jeremy Palacios
New Business	Bettye Hutchins

A. Review program outcomes

Bettye Hutchins asked Chaz Tepfer to review the program outcomes listed below.

Program outcomes

- 1. Correctly read and interpret blueprints and weld symbols.
- 2. Safely demonstrate Shielded Metal Arc Welding (SMAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.
- 3. Safely demonstrate Gas Metal Arc Welding (GMAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.

- 4. Safely demonstrate Flux Core Arc Welding (FCAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.
- 5. Safely demonstrate Gas Tungsten Arc Welding (GTAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.
- 6. Select appropriate materials, tools, and equipment to construct metal projects to specification as dictated by the blueprint.

Program outcomes mapped to courses

Program: Welding										
Award: Welding				ding	;					
			e in			Cred	dential: Associate in Applied Science (AAS) Degree			
	•			nce						
			gre 508							
Ci	μ. 4	-6.0	300	•		LIST OF AL	L COURSES REQUIRED AND OUTCOMES			
	0	UTC	ON	ΛES		Course				
						Number	Course Title			
1	2	3	4	5	6					
Χ	Χ				Х	WLDG 2443**	Advanced Shielded Metal Arc Welding (SMAW)			
Χ		Χ			Х	WLDG 2447 ** Advanced Gas Metal Arc Welding (GMAW)				
					Х	WLDG 1337* Introduction to Welding Metallurgy				
Χ					Х	WLDG 1313* Introduction to Blueprint Reading for Welders				
Χ	Χ	Χ	Χ	Х	Х	WLDG 1317* Introduction to Layout and Fabrication				
Χ	Χ	Χ	Χ	Χ	Х	WLDG 1327**	Welding Codes and Standards			
Χ	Χ					WLDG 1428*	Introduction to Shielded Metal Arc Welding (SMAW)			
Χ		Χ				WLDG 1430*	Introduction to Gas Metal Arc Welding (GMAW)			
Χ				Х		WLDG 1434*	Introduction to Gas Tungsten Arc (GTAW) Welding			
Χ	Χ	Χ	Χ			WLDG 1435*	Introduction to Pipe Welding			
Χ	Χ	Χ	Χ	Χ	Х	WLDG 2413** Intermediate Welding Using Multiple Processes				
Χ	Χ	Χ	Χ	Χ	Х	WLDG 2453** Advanced Pipe Welding				
						Select appropriate materials, tools, and equipment to construct metal projects to				
						pecification as dictated by the blueprint.				
						fely demonstrate Gas Tungsten Arc Welding (GTAW) processes in flat, horizontal,				
						cal, and overhead positions to American Welding Society (AWS) and industry				
				Sta	andards.					

- 4. Safely demonstrate Flux Core Arc Welding (FCAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.
- 3. Safely demonstrate Gas Metal Arc Welding (GMAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.
- 2. Safely demonstrate Shielded Metal Arc Welding (SMAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.
- 1. Correctly read and interpret blueprints and weld symbols.

1. Approve program outcomes

Bettye asked if there were any questions or comments. With no additional discussion, she asked for a motion to approve the program outcomes as presented.

Joey Davis made a motion to approve.

Jim Harris seconded the motion.

The motion passed and the committee approved the program outcomes as presented.

Bettye then moved on to assessment methods.

B. Assessment methods and results

Bettye Hutchins asked Chaz Tepfer to review the assessment methods. There have been no changes, so Chaz gives a brief reminder of his assessment methods.

It involves a careful visual examination of the weld and its surrounding area for visible defects such as cracks, incomplete penetration, porosity, undercutting and weld profile irregularities. With constant repetition and arc time the student works to fine tune the weld bead so that no discontinuities are visible.

1. Approve assessment methods and results

After review, Bettye asked if there were any questions or comments. With no additional discussion, Bettye asked for a motion to approve the assessment methods as presented. Brian Aldrich made a motion to approve.

Tom Ostovich seconded the motion.

The motion passed and the committee approved the assessment methods as presented. Bettye then moved on to workplace competency.

C. Workplace competency (course or exam)

Bettye Hutchins asked Chaz Tepfer to review the following workplace competency information.

Capstone: WLDG 1327:

The purpose of the Capstone course is so the student(s) can demonstrate what they have learned during the 1 ½ years in the program and gain confidence they are ready to pursue a job in the area of Welding Technology.

The method of grading in the Capstone course WLDG1327 Welding Codes and Standards is through various Qualification tests. The tests that are offered are 3G plate and 6G pipe, the weld joint is prepared by the student and then welded each pass is visually inspected. If the welded joint passes, the Visual Inspection then the student will cut coupons out of the welded joint to be bend tested, on the plate coupon there is 1 Root bend and 1 Face bend, on the pipe coupon there is 2 Root bends and 2 Face bends. After the bend tests have been completed, they are Visually Inspected to the (AWS) D1.1 or API 1104 Standard. This is a pass or fail test, if the student does not pass the test on the first try he/she will work to correct any discontinuity or defect to pass the test the next time.

Program Outcome	Number of students who took the course or licensure exam	Results per student	Use of results
1. Correctly read and interpret blueprints and weld symbols.	9 students Fall 24 9 students Spring25 1 student Sum 25	100% 100%	Comments below
2. Safely demonstrate Shielded Metal Arc Welding (SMAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.	9 students Fall 24 9 students Spring 25 1 student Sum 25	100% 100%	
3. Safely demonstrate Gas Metal Arc Welding (GMAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.	9 students Fall 24 9 students Spring 25 1 student Sum 25	100% 100%	
4. Safely demonstrate Flux Core Arc Welding (FCAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.	9 students Fall 24 9 students Spring 25 1 student Sum 25	100% 100%	
5. Safely demonstrate Gas Tungsten Arc Welding (GTAW) processes in flat, horizontal, vertical, and overhead positions to American Welding Society (AWS) and industry standards.	9 students Fall 24 9 students Spring 25 1 student Sum 25	88% 88%	
6. Select appropriate materials, tools, and equipment to construct metal projects to specification as dictated by the blueprint	9 students Fall 24 9 students Spring 25 1 student Sum 25	100% 100%	

1. Approval of workplace competency

After review, Bettye asked if there were any questions or comments. With no additional discussion, Bettye asked for a motion to approve the workplace competency as presented. Mark Patterson made a motion to approve.

Jim Harris seconded the motion.

The motion passed and the committee approved the workplace competency as presented. Bettye then moved on to review program curriculum/courses/degree plans.

D. Review program curriculum/courses/degree plans

Bettye Hutchins asked Chaz Tepfer to review the curriculum, courses, and degree plan. Chaz reviewed the restructuring of the program to offer multiple exit points and stackable credentials existing of an Occupational Skills Award (OSA), Level I Certificate, Level II Certificate, and Associate of Applied Science Degree. This allows students who cannot complete the full degree in one attempt to still earn useful credentials even if they can only attend one semester or one year. Each credential's course requirements feed into the next level.

Occupational Skills Award, Basic Welding

WLDG 1313	Introduction To Blueprint Reading For Welders	3
WLDG 1428	Introduction to Shielded Metal Arc Welding (SMAW)(A)	4
WLDG 1430	Introduction to Gas Metal Arc Welding (GMAW)	4
	Total hours	11

Welding, Level 1 Certificate

CIP 48.0508

Instructional Location – Skills Training Center

CERTIFICATE OF COMPLETION (Probable Completion Time - 32 weeks or 2 semesters) **Major Requirements (25 SH)**

WLDG 1317	Introduction to Layout and Fabrication *	3
WLDG 1337	Introduction to Welding Metallurgy	3
WLDG 1313	Introduction To Blueprint Reading For Welders	3

WLDG 1428	Introduction to Shielded Metal Arc Welding (SMAW) (A)	4
WLDG 1430	Introduction to Gas Metal Arc Welding (GMAW)	4
WLDG 1434	Introduction to Gas Tungsten Arc (GTAW) Welding	4
WLDG 1435	Introduction to Pipe Welding	4
	Total Credit Hours:	25

⁽A) Course included on the State's Advanced Technical Credit list. (See Advanced Technical Credit.)

Welding, Level 2 Certificate

CIP 48.0508

Instructional Location – Skills Training Center

CERTIFICATE OF COMPLETION (Probable Completion Time - 32 Weeks or Two Semesters) **Major Requirements (20 SH)**

WLDG 1317	Introduction To Layout And Fabrication	3
WLDG 1337	Introduction to Welding Metallurgy	3
WLDG 1313	Introduction To Blueprint Reading For Welders	3
WLDG 1428	Introduction to Shielded Metal Arc Welding (SMAW)(A)	4
WLDG 1430	Introduction to Gas Metal Arc Welding (GMAW)	4
WLDG 1434	Introduction to Gas Tungsten Arc (GTAW) Welding	4
WLDG 1435	Introduction to Pipe Welding	4
LEAD 1100	Workforce Development w/Critical Thinking	1
WLDG 1327	Welding Codes and Standards	3
WLDG 2413	Intermediate Welding Using Multiple Processes	4
WLDG 2453	Advanced Pipe Welding	4
WLDG 2443	Advanced Shielded Metal Arc Welding (SMAW)	4
WLDG 2447	Advanced Gas Metal Arc Welding (GMAW)	4
	Total Credit Hours:	45

Add AWS D1.1 Structural Steel qualification to WLDG 1327

Welding, A.A.S.

CIP 48.0508

Instructional Location - Skills Training Center

ASSOCIATE IN APPLIED SCIENCE DEGREE (Probable completion Time - 2 years)

General Education Requirements (15 SH)

ENGL 1301	Composition I	3
GOVT 2305	Federal Government (Federal Constitution and Topics)	3
MATH 1314	College Algebra	3
	or	
MATH 1332	Contemporary Mathematics	3
SPCH 1315	Public Speaking	3
LEAD 1100	Workforce Development with Critical Thinking	1
SFF>	Language, Philosophy, and Culture or Creative Arts Elective	3

Major Requirements (45 SH)

WLDG 1337	Introduction to Welding Metallurgy	3
WLDG 1313	Introduction To Blueprint Reading For Welders	3
WLDG 1317	Introduction To Layout And Fabrication *	3
WLDG 1327	Welding Codes and Standards	3
WLDG 1428	Introduction to Shielded Metal Arc Welding (SMAW) (A)	4
WLDG 1430	Introduction to Gas Metal Arc Welding (GMAW)	4
WLDG 1434	Introduction to Gas Tungsten Arc (GTAW) Welding	4
WLDG 1435	Introduction to Pipe Welding	4
WLDG 2413	Intermediate Welding Using Multiple Processes**	4
WLDG 2453	Advanced Pipe Welding ***	4
WLDG 2443	Advanced Shielded Metal Arc Welding (SMAW)	4
WLDG 2447	Advanced Gas Metal Arc Welding (GMAW)	4
	Total Credit Hours:	60

^{• *}Add Prerequisite 1434

- ** Add Prerequisites 1313, 1428, 1430,1434
- *** Add Prerequisite 1434

> To be selected from the following: ARTS 1301, DRAM 1310, DRAM 2366, ENGL 2322, ENGL 2323, ENGL 2327, ENGL 2328, ENGL 2332, ENGL 2333, HIST 2311, HIST 2312, MUSI 1306

(A) Course included on the State's Advanced Technical Credit list. (See Advanced Technical Credit.)
Add AWS D1.1 Structural Steel qualification to WLDG 1327

1. Approve program revisions

After review, Bettye asked if there were any questions or comments. With no additional discussion, Bettye asked for a motion to approve the curriculum/courses/degree plans as presented.

Tom Ostovich made a motion to approve.

Brian Aldrich seconded the motion.

The motion passed and the committee approved the curriculum/courses/degree plans as presented.

Bettye then moved on to statistics.

E. Statistics:

Bettye Hutchins asked Chaz Tepfer to review the following statistics:

- Program Statistics:
 - Graduates 2023-2024: 14
 - Enrollment Summer 2025: 42?
 - Majors Fall 2023-2024: 149/146
 - Enrollment Fall 2025: 135

After review, Bettye moved on to local demand/labor market outlook.

F. Local Demand/ Labor Market Outlook

Bettye Hutchins reviewed the following labor market outlook information and questions whether the data provided is accurate. Bettye next asks questions from the Comprehensive Local Needs Survey, collecting information used in reporting to the state.

				Current /Projected	
				Job	Projected
	National Median	State Median	Local Median	openings	Growth
Occupation	Wage	Wage	Wage	(2022-2032)	(2022-2032)

Welding, Soldering, & Blaxing Machine Setters, Operators, & Tenders \$22.62/hr \$47,060/annual	\$24.63/hr \$51,220/annual	\$21.80/hr \$45,330	170 TX.	3% TX.
--	-------------------------------	------------------------	---------	--------

*BLS 2024 wage data

After the CLNA survey, Bettye then moved on to review facilities, equipment, and technology.

G. Evaluation of facilities, equipment, and technology. Recommendation for the acquisition of new equipment and technology.

Bettye Hutchins asked Chaz Tepfer to review the following information regarding facilities, equipment, and technology.

Acquisition of SAW Table has been approved and will be fully funded by the Carl D. Perkins Career and Technical Education Grant through the Office of Instructional Services.

After review, Bettye asked if there was any suggested equipment to look into for the program. With no further discussion to be had, Bettye moved on to professional development.

H. Professional development of faculty and recommendations

Bettye Hutchins asked Chaz Tepfer to review professional development. Chaz reviewed his latest professional development opportunities and discussed upcoming possibilities.

Vernon College has several faculty development opportunities throughout the year, face-to-face and online development training. I competed my nine-year recertification from AWS this past April, funded by the Carl D. Perkins Career and Technical Education Grant through the office of Instructional Services.

Bettye asked for any suggestions, then with no further discussion, moved on to promotion and publicity.

I. Promotion and publicity (recruiting) for the program

Bettye Hutchins asked Chaz Tepfer to review promotion methods. Chaz reviewed promotion and publicity/recruiting practices. Bettye added information regarding marketing efforts funded by the Office of Instructional Services as well as the duties of the CTE Navigator in visiting area junior highs, high schools, and community events.

Vernon College is always trying to promote the Welding Program through several outlets; Web-Site, Facebook, Twitter, Instagram etc.. I also have a great relationship with the instructors at the CEC center and local high school welding programs.

After review, Bettye asked if there were any comments or suggestions. With no further discussion, he then moved on to special populations.

J. Serving students from special populations:

Bettye Hutchins asked Chaz Tepfer to review the definitions of special populations and the services available to those who apply. Bettye goes on to expand on the services covered by the college and it's various departments, including emergency aid funding and a food pantry located in each campus.

Vernon College is an open-enrollment college. The Proactive Assistance for Student Services (PASS) department offers many services for documented disabilities such as but not limited to quiet testing, longer testing times, interpreters, and special equipment.

Vernon College has a program titled "New Beginnings" for students who qualify to receive transportation, childcare, and/or textbook loans. Perkins funding is also offering assistance to break down barriers such as uniform, supply, and equipment costs.

Peer to Peer mentoring, tutoring (online and in-person), resume building, student success series, and counseling are just a few of the other options/services available to students.

- 1. Special population's new definitions:
 - a. Individuals with disabilities;
 - b. Individuals from economically disadvantaged families, including low-income youth and adults;
 - c. Individuals preparing for nontraditional fields; 8 females, rest males
 - d. Single parents, including single pregnant women;
 - e. Out-of-workforce individuals;
 - f. English learners;
 - g. Homeless individuals described in section 725 of the McKinney-Vento Homeless Assistance Act (42 U.S.C. 11434a);
 - h. Youth who are in, or have aged out of, the foster care system; and
 - i. Youth with a parent who
 - i. is a member of the armed forces (as such term is defined in section 101(a)(4) of title 10, United States Code);
 - ii. is on active duty (as such term is defined in section 101(d)(1) of such title).

Bettye Hutchins asked if the committee had any further action, discussion or recommendations. With no further discussion to be had, Bettye adjourned the meeting at 1:11pm.

Recorder Signature	Date	Next Meeting: Fall 2026
Brian aldrich	11/20/25	